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SUMMARY

This paper deals with the calculation of free surface flow of viscous incompressible fluid around the hull
of a boat moving with rectilinear motion. An original method used to avoid a large part of the theoretical
problems connected with free surface boundary conditions in three-dimensional Navier–Stokes–
Reynolds equations is proposed here. The linearised system of convective equations for velocities,
pressure and free surface elevation unknowns is discretised by finite differences and two methods to solve
the fully coupled resulting matrix are presented here. The non-linear convergence of fully coupled
algorithm is compared with the velocity–pressure weakly coupled algorithm SIMPLER. Turbulence is
taken into account through Reynolds decomposition and k–o or k–v model to close the equations. These
two models are implemented without wall function and numerical calculations are performed up to the
viscous sub-layer. Numerical results and comparisons with experiments are presented on the Series 60
CB=0.60 ship model for a Reynolds number Rn=4.5×106 and a Froude number Fn=0.316.
Copyright © 1999 John Wiley & Sons, Ltd.

1. INTRODUCTION

This work started with a basic consideration: double model incompressible flow solution
(without free surface effects) and free surface flow solution are fundamentally different.
Double model flow admits multiple solutions for the pressure, all of which are clearly defined
with a constant, and free surface flow has a strictly single solution for the pressure field. The
non-invertibility of the pressure matrix is due to the infinity of discrete solutions for the double
model flow. The existence of these solutions is ensured by a second member compatibility
criteria, i.e. the global conservation of mass, and depends on boundary conditions. Free
surface flow is driven by the same equations (mean momentum transport equation and mass
conservation) and unity of solution is ensured through free surface boundary conditions only
(in fact kinematic and normal dynamic conditions). The evident conclusion is that at least one
free surface equation must be coupled with the pressure equation. The easiest and the most
common way to achieve this is to implement normal dynamic conditions, such as the Dirichlet
boundary condition, in the pressure matrix. Mathematically, however, this operator does not
need boundary conditions and the only way to take the normal dynamic condition into
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account is to locally substitute the discrete pressure equation with the normal dynamic
condition, and give up the local conservation of mass in the cell near the free surface, which
is theoretically unacceptable. Nevertheless, software based on this method gives good results
except near the wall-free surface singularity [1–4]. The solution consists of relaxing the free
surface condition, no-slip condition, or the no-slip condition near the hull, which is not very
suitable for the quality of results.

This problem can be avoided using one of two methods. The first one is to solve the pressure
block coupled with kinematic condition to express the flux on the free surface as a function of
the pressure. Then the pressure block becomes invertible and the unity of the pressure solution
is ensured. The second way consists of solving the fully coupled linear system constituted by
the momentum transport equations, the mass conservation (pressure equation) and the free
surface boundary conditions. Unfortunately the most efficient iterative algorithms
(CGSTAB+ILU preconditioning, GMRES, MultiGrid) are unable to invert this fully coupled
system due to the ill-conditioned matrix. The solution is to modify the system using the free
surface boundary condition to express the flux through the free surface (as in the first method).
The condition number decreases and the system becomes invertible by iterative algorithm
(Figure 1). The description of this last method is the main purpose of this paper.

However, solving exact free surface conditions in the whole domain up to the viscous
sublayer is not the only reason to implement a velocity–pressure-free surface elevation
algorithm. Weakly coupled algorithms such as SIMPLE, SIMPLER or PISO can be inter-
preted as two blocks relaxation algorithms, sufficient to obtain an approximate divergence-free
solution but unable to find an accurate velocity–pressure coupled solution. Consequently,
convergence saturation on non-linear residual (Figure 2) must be seen as ill velocity–pressure
coupling and not as difficulties in solving non-linearities, even in turbulent flows where
non-linear effects are strong. Figure 2 presents the non-linear convergence history during a
time step using the SIMPLER algorithm and fully coupled algorithm to solve the linear
system. Figure 2 shows that the convergence saturation of the SIMPLER algorithm is not due
to non-linear effects but to velocity–pressure coupling because of the fast convergence of fully
coupled algorithm.

The conclusion is that the fully coupled method is a more accurate and faster way to solve
Navier–Stokes equations with free surface conditions. We propose to solve the three-dimen-

Figure 1. CGSTAB+ILU preconditioning convergence solving modified and non-modified fully coupled system.
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Figure 2. Comparison between fully coupled and SIMPLER algorithms to solve non-linear problem during a time
step.

sional Navier–Stokes and Reynolds equations, with Newtonian closure, written in the convec-
tive form in a curvilinear computational space, fitted at each time to the hull and the free
surface. k–o and k–v models solving two transport equations for kinetic energy and
turbulence dissipation are compared. Near the hull a Jones–Launder low Reynolds formula-
tion has been developed for the k–o model. The main boundary conditions are the no-slip
condition on the hull and the fully non-linear free surface conditions written on the actual
position of the free surface. A dual unknowns location on the volumic grid associated to the
Rhie–Chow interpolation technique is used for the construction of pressure equation. The
three components of velocity are located on the nodes of the grid, pressure at the centre of
elementary volumes and free surface elevation at the centre of free surface interface. Transport
equations are written on the nodes of the mesh, the pressure equation is solved at the centre
of elementary volumes and normal dynamic free surface condition at the centre of the free
surface interface. The two tangential dynamic conditions and the kinematic condition form the
set of velocity boundary conditions on the free surface. The fully linear system obtained by
second-order finite difference schemes for the velocity components, the pressure and the free
surface unknowns is solved at each iteration using a multigrid method with three levels of grid
or a CGSTAB+ILU conditioning algorithm.

Numerical results concerning the free surface elevation and the velocity field around a Series
60 CB=0.60 (Rn=4.5×106, Fn=0.316) show good agreement with experimental results. The
problem of singularity of kinematic condition on the hull is solved well and we can calculate
the formation of an unsteady meniscus near the wall in the whole boundary layer.

2. EQUATIONS

Navier–Stokes–Reynolds equations are written under a convective form for a three-dimen-
sional turbulent flow in a Newtonian incompressible fluid. The three components of velocity
(ui), pressure (p) including the gravitational effects (rgx3) and turbulent kinetic energy (2/3rk)
are the dependant unknowns. Independent unknowns are the three directions of curvilinear
co-ordinates (j i) and the time (t), (xi) is the Cartesian basis and Ua the forward velocity. The
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curvilinear system is chosen to simplify boundary conditions on the hull and on the free
surface. j2=0 and j3=0 are the equations of the wetted part of the hull and of the free
surface respectively, at each time.

A partial transformation of the Cartesian space moving with time in a curvilinear computa-
tion space is then applied. The metric of this transformation uses covariant basis (ai) and
contravariant basis (ai), contravariant metric tensor (gij), control grid functions ( f i) and
deformation velocities of the computational domain (ug

i ). Transport equations in the frame
moving with the hull are written

u ,t
a + (ai

j(ui−ug
i )−6eff f j−ak
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a +
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and the continuity equation
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3. TURBULENCE MODELS

A classical k–o model given for completely developed turbulent flow does not allow to describe
parietal flow where the turbulent viscosity is negligible versus molecular viscosity. The Jones
and Launder model [11] allows the integration of transport equations up to the wall. It gives
the damping function, describing attenuation of turbulence as a function of turbulent Reynolds
number Rt=k2/(6õ). In the curvilinear space (j i, t) the two transport equations for k and õ are
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õ,t+
�

ai
j(ui−ug

i )−
�
6+
6t
ho

�
f j−ak

i 6t,i
ho

ak
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Turbulent viscosity is given by

6t=Cm fm

k2

õ
. (5)

f1, f2 and fm are given as functions of the turbulent Reynolds number:

f1=1, f2=1−0.3 exp(−Rt2), fm=exp(−2.5/(1+Rt/50)). (6)

The production term and the two other source terms are given by the following expression,
where n is the normal vector at the hull and Vt is the tangential velocity:

Pr=6ta j
ku ,k

i (aj
lu ,l

i +ai
lu ,l

j ), Ek= −26((
k),n)2, Eo=266t(Vt,nn)2. (7)

Numerical values of constants are

Cm=0.09, Co1=1.44, Co2=1.92, hk=1, ho=1.3. (8)

Another transport equation formulation has been proposed by Wilcox, introducing a
specific dissipation rate, defined as

v=
o

kb*
. (9)
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The partial transformation of this transport equation is

k,t+
�

ai
j(ui−ug

i )− (6+s*6t)f j−ak
i 6t,i

hk

ak
j�k, j− (6+s*6t)gijk,ij−Pr+b*vk=0, (10)

v,t+
�

ai
j(ui−ug

i )− (6+s6t)f j−ak
i 6t,i

ho

ak
j�v, j− (6+s6t)gijv,ij−

gv

k
Pr+bv2=0, (11)

with

Í
Ã

Ã

Á

Ä

b*=0.09;

g*=1.0;

s=0.5;

s*=0.5;

g=
5
9

b=
3

40

. (12)

4. STANDARD BOUNDARY CONDITIONS

The previous formulation has boundary conditions for the velocity field, the kinetic energy and
the turbulence dissipation. No other equation is needed to give pressure or free surface
elevation on the boundaries. Particularly, there is no algebraic interpolation in the vicinity of
the wall. We note Gc the hull, Ge the external boundary, Ga the symmetry plane and Gs the free
surface.

We use the following boundary conditions for k and õ :

k=kmin and õ= õmin on Ge@Gc@Gs,
(k
(x2=

(õ

(x2=0 on Ga, (13)

and for k and v :

k=kmin and v=vmax on Gs, k=kmin and v=Ua/l on Ge,

k=kmin and v�
66

bd2 on Gc,
(k
(x2=

(õ

(x2=0 on Ga, (14)

where l is the boat length and d the distance to the hull.
Experiments have shown that the turbulent viscosity is greatly damped on the free surface

[6]. This fact justifies the boundary conditions given by Equations (13) and (14). However, the
decrease is very local and its influence on the results presented in this paper is weak.

Boundary conditions for the velocity field on other boundaries than Gs are given by

ui=0 on Gc, u1=Ua, u2=u3=0 on Ge, u2=0,

(u1

(x2=
(u3

(x2=0 on Ga. (15)

5. FREE SURFACE CONDITIONS

Boundary conditions on Gs are: one kinematic condition, two dynamic tangential conditions
and one normal dynamic condition. The kinematic condition, coming from the continuity
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hypothesis, expresses that the fluid particles of free surface stay on it. To write this condition
in a curvilinear frame, we must remark that h is only a function of two independent variables
on the surface. Noting (bi), the contravariant basis of the metric bidimensional transformation,
we have

h,t+ (bi
j(ui−ug

i )h, j)(i, j)�{1,2}−u3=0 on Gs. (16)

Numerical difficulties at the intersection of the hull with the free surface come from this
equation. Both the no-slip condition and free surface condition must be satisfied on the
intersection. If the no-slip condition is placed directly into the free surface equation without
care, one can deduce that (h/(t=0. This conclusion is not verified by experiment and shows
the singular numerical behaviour of kinematic condition on the intersection [8,12]. Mathemat-
ically, the only way for the free surface to move is to become tangential to the hull. In this
case, the value of the Jacobian of the transformation is zero and kinematic condition cannot
be used on the hull.

Dynamic conditions are given by the continuity of strains at the free surface. If we suppose
that pressure is constant above the free surface, the normal dynamic condition is

p−rgh−2
r6eff

�a3�2 ai
3aj

3aj
ku ,k

i −
g

r
=0 on Gs, (17)

where g is the superficial tension coefficient and r is the free surface medium curvature radius.
The tangential dynamic conditions are simply given by a linear combination of first velocities
derivatives:

aai g j3u , j
i =0. (18)

6. THE NUMERICS

The discrete components of velocity (Ui
a), kinetic energy (Ki) and turbulence dissipation (Ei),

(Vi) are located along the curvilinear co-ordinate lines defining the volumic grid (V), which
allows the boundary conditions on ((V) to be written. Pressure unknown (Pk) is located at the
centre of elementary volumes (V6) to ensure mass conservation without special treatment at
the boundaries. Free surface elevation (Hk) is located at the centre of the free surface interfaces
((Vsi ), avoiding the singularity of the kinematic free surface condition. (Vs is the point of V
belonging to the free surface only and (Vb is the equivalent of (Vs in (V. Figure 3 shows the
location of the unknowns.

All numerical schemes used in the remaining part of this chapter are second-order schemes.

Figure 3. Location of unknowns.
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Figure 4. General discretisation cells.

6.1. Discretisation of transport equations

This discretisation needs a linearisation of equations: convection velocities and part of the
turbulence terms are computed at the previous time step. Convection terms are computed with
an upward second-order scheme and need a 13-point grid (Figure 4). Diffusion terms need a
seven-point grid and the cross second derivatives (12-point grid) are in the source terms.
Pressure gradient is computed on the nodes with an eight-point grid (Figure 4). So, at node i

Ui
a+ (xu)ij Uj" i

a + (xp)ik
a Pk= fu i

a on V¯(V. (19)

6.2. Discretisation of free surface conditions

Uncoupled methods use a classically kinematic equation to compute free surface elevation
and dynamic normal condition, without viscous terms, such as a Dirichlet condition on the
pressure. The problem of these methods has been described, so a very different algorithm is
used here. The two tangential dynamic conditions associated with the kinematic condition give
the three boundary conditions for velocities at the free surface and the normal dynamic
condition allows the computation of the free surface elevation.

With this formulation, we linearise the kinematic condition as an implicit relation between
the three velocity components and the free surface elevation:

h,t+A1u1+A2u2−u3=A1ug
1+A2ug

2. (20)

Spatial derivatives of free surface elevation in the terms Ai are expressed with second-order
centred schemes on a four-point grid. The unsteady term is computed by a three-point
non-centred scheme. H0 is the free surface elevation on the nodes of free surface given by
interpolation of H (Figure 4), so the discrete expression of the kinematic condition is
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Discretisation of the two tangential dynamic conditions on a six-point grid can be written as!l i
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Equations (21) and (22) are free surface velocity field boundary conditions.
To obtain a well-conditioned system, we solve analytically, on each node, the linear system

of Equations (21) and (22) for the unknowns Ui. The boundary conditions become

Ui
a+ (xsu)ij

aUj" i
a + (xsh)i

aH0 i= fs i
a on (Vs. (23)

It must be noted that a better conditioning of Equation (23) is obtained if the derivatives of
the tangential dynamic conditions are not centred, to maximise the absolute value of
coefficients l ii.

Discretisation of normal dynamic condition gives no problem. Viscous terms are explicit in
the RHS. The only point to note is that the pressure is known at the centre of control volumes
and the free surface at the centre of free surface interfaces. Pressure at the free surface is
linearly extrapolated with a two-point scheme:

Hk+ (xsp)kj Pj= fhk on (Vsi. (24)

6.3. Discretisation of continuity equation, use of a generalised Rhie and Chow method to
obtain the pressure equation

The Rhie and Chow method is commonly used to obtain a pressure equation without
spurious modes, from the continuity equation. For the double model, this method gives an
infinity of solutions differing by a constant, and the numerical solution needs the compatibility
of the RHS. In the case of free surface problem, new boundary conditions ensure invertibility
of the linear coupled system and unity of the solution. Unfortunately, due to the pressure
block, numerical convergence is poor. A method giving an invertible and well-conditioned
pressure block is used. All free surface conditions are explicitly introduced into the continuity
equation for calculation of the divergence. Symbols with (� ) or (–) above them are terms
respectively interpolated on the nodes of the mesh or at the centre of free surface interfaces.

Free surface elevation is eliminated from Equation (23) using normal the dynamic condition
(24):
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*a), the three transport equations and three free
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. (28)

The pressure equation is obtained by writing the zero divergence on the control volumes. The
case ss=0 is the classical Rhie and Chow method, and gives an ill-conditioned system.
Introduction of boundary conditions for the divergence calculation under free surface (ss"0)
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corrects the previous equation and gives a system which is easy to solve numerically. The
pressure equation becomes

(xmp)klPl+ (xd)ki
a Ui

*a=0 on V6. (28b)

7. SOLUTION OF LINEAR SYSTEMS

The coupled linear system matrix is

(29)

The linear system, which allows kinetic energy to be obtained and the turbulence to be
dissipated, is solved independently.

Therefore, it is necessary to summarise the equations at each step to obtain velocities,
pressure and free surface elevation. The transport equation is written on V¯(V (19), the
relation between the main and secondary unknowns on V¯(V (23), the kinematic and
tangential dynamic conditions on (Vs (21), the implicit definition of secondary unknowns
compatible with the values taken by s6 and ss on (V (23), boundary conditions on velocities
and the implicit relations for secondary velocity unknowns on (V, the normal dynamic
condition on (Vsi and the pressure equation on V6 (24). It is important to note that no
condition on pressure or free surface elevation is needed.

The main interest of the discretisation of the present method is that the velocity–pressure
block is uncoupled with the free surface in the linear system. The solution for velocities and
pressure can be obtained independently from free surface elevation, which can be computed at
the end of each time step using the normal dynamic condition.

Linear system for turbulence kinetic energy and turbulence dissipation issued from turbu-
lence models is first solved. This system is well-conditioned and easily invertible using a
classical CGSTAB (accelerated and stabilised bi-conjugate gradient) without any
preconditioning.

Unfortunately the fully coupled linear system for the velocities, pressure and free surface
elevation unknowns is very ill-conditioned, especially the xmp block concerning the incom-
pressible pressure equation, that means the mass conservation. So classical iterative methods
are not available to solve this very large system. Two recent iterative methods have been tested
in this paper.

The first method consists of an improvement in the CGSTAB algorithm using matrix
preconditioning [16]. The second method is based on linear full multigrid algorithms [5]. Figure
5 presents the convergence of the two methods solving the fully coupled system. We can see
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that the full multigrid algorithm is more efficient, but the difference between the CGSTAB
algorithm and multigrid algorithms is less impressive than in two-dimensional model problems.
Here the matrix structure and the grid complexity (very large aspect ratio near the hull,
non-orthogonal lines) reduce the full multigrid efficiency.

8. NUMERICAL RESULTS

Numerical results of this method are presented here. Calculations are performed on a Series 60
CB=0.6 hull for a Reynolds number Rn=Ua× l/6=4.5×106, a Froude number Fn=Ua/

gl=0.316 and a Bond number Bn=rgl2/g=1.3×106. The O–O topology grid (Figure 6)
has 314265 nodes (105×73×41). The first grid point is located at s/l=1×10−5 of the wall.
To obtain a steady state, 300 time iterations are necessary with a non-dimensional time step
t=0.02. The CPU time is :20 h of a 20 specfp95 workstation.

Figure 7 shows the free surface elevation along the hull for two turbulence models (k–o and
k–v) compared with experiments [14,15]. We can see that the influence of turbulence
modelisation is weak, the two curves are superposed except on the wake, where the amplitude
of the stern wave is larger with the k–v modelisation. Experiments show an amplitude of the
stern wave of :0.014, that seems in better agreement with the k–v model.

Figure 8 shows that the wave field around the body is not strongly dependant on turbulence
modelisation. Nevertheless, the damping of the oscillations in the wake seems to be smaller
with the k–v turbulence model.

It is well-known that for the conventional hull, coupling between viscous effect and wave
field is weak except at the stern. For this reason, software based on the perfect fluid and zero
vorticity flow assumptions solving Laplace equations by panel method gives good free surface
elevation results [10], and the small influence of turbulence modelisation on the present

Figure 5. Comparison between CGSTAB and full multigrid algorithms.
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Figure 6. Grid topology around the hull.

calculation is not very surprising [7,9,13]. So to conjecture that vorticity is almost zero on the
external region of the free surface seems reasonable. Nevertheless, numerical simulation shows
that vorticity is significant in the boundary layer, which is a classical result, but also on the free
surface, transported by gravitational effects, which is more astonishing (Plate 1).

Figures 9 and 10 present the longitudinal velocity isolines for experiments and the two
turbulence models on various sections from the bow (x/l= −0.5) to the stern (x/l= +0.5).
The k–o model gives a larger boundary layer thickness due to the convection of an open
separation when the flow crosses the bilge (x/l=0.3 and X/l=0.4 sections). Isolines obtained
with k–v modelisation are in better agreement with experiments: the boundary layer thickness
is well computed and does not increase excessively near the bilge. Figures 11 and 12 present the
transversal and the vertical velocity components for k–v modelisation. The agreement with
the experiments is good for both components. We can note the location of the open separation
on the x/l= −0.1, 0.1, 0.3, 0.4 sections.

Figure 7. Free surface elevation along the hull for the two turbulence models.
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Figure 8. Wave field around the hull for the two turbulence models.

However, we have verified during calculations that boundary layer velocity profiles on the
stern are strongly dependant on the transition between laminar and turbulent flow location. In
the present calculations transition is imposed at x/l= −0.47.

An important topic for the future concerns the problem of bow wave breaking for fine
discretisation. The first question is to determine the origin of this phenomenon: physical or
numerical origin. Physically, two phenomena coexist: the problem of wave breaking concern-
ing plunging breaker and spilling breaker and the problem of compatibility between no-slip
boundary condition on the body and the kinematic condition on the free surface.

Astonishingly, spilling breaker does not appear to be a difficulty: two-dimensional calcula-
tion shows that numerical dissipation on the free surface increases with free surface slope and
prevents the free surface from achieving breaking slope. In this case numerical dissipation acts
like breaking dissipation. The problems of spilling breaker and jet on the bow is more
problematic, the fast increase of vertical velocity on the free surface cannot be balanced by
numerical dissipation and ends in the divergence.

The problem of compatibility between kinematic and no-slip condition appears to be very
close to the hull for large Reynolds numbers (Rn\107). The physical contradiction can be
solved by forsaking the continuity hypothesis, that is out of place in this context. Mathemat-
ically, a numerical displacement of contact point is asymptotically ensured by tangency of the
hull with the free surface. In any case, free surface elevation unknowns do not have to be
located on the contact point.

Nevertheless, a free surface formulation allowing an accurate mass conservation and a strict
discretisation of free surface conditions (and only free surface conditions, that is not always
true) avoids a lot of numerical problems assimilated by error to wave breaking. Bow wave
breaking does not appear for present flow parameters, but for higher Froude numbers or for
computations of flows with attack angle, the wave breaking dissipation model should be
absolutely necessary.
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Figure 9. Longitudinal velocity component in various sections (k–v model).
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Plate 1. Flow vorticity on the free surface.
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Figure 10. Longitudinal velocity component in various sections (k–o model).
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Figure 11. Transversal velocity component in various sections (k–v model).
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Figure 12. Vertical velocity component in various sections (k–v model).
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9. CONCLUSION

We have presented here a fully coupled algorithm allowing the solution of the Navier–Stokes–
Reynolds equations with free surface effects. Physically, this method avoids the problem of
mass conservation under free surface and significantly improves the treatment of wall-free
surface intersection. Numerically this technique accelerates the velocity–pressure coupling: the
fast convergence allows the solution of the linear system at the computer precision which was
not possible using classical coupling algorithms (SIMPLE, SIMPLER, PISO) because of the
very low convergence rate under a 10−3 residual.

The present method was tested on a well-known three-dimensional test case: the Series 60
CB=0.6 for a Reynolds number equal to 4.5×106 and a Froude number equal to 0.316 with
a k–v turbulence model. The first computation grid node is located up to the viscous sublayer
(y+B5) and all non-linear free surface conditions are solved on the whole domain. Concern-
ing the wave field and the velocity fields, comparison of calculations and experimental results
are in good agreement. The effects of a slight numerical damping on the wake are noted.
Future work will be directed towards the resolution of this problem, perhaps using potential
flow and RANSE coupling.
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